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On the super-potentials for Liénard—Wiechert potentials
in far fields

Hideki Kawaguchi and Toshihisa Honma

Department of Electrical Engineering, Faculy of Engineering, Hokkaido University,
Kita 13, Nishi 8, Kita-ku, Sapporo, Japan

Abstract. There exist super-potentials which result in Liénard-Wiechert potentials. The
physical meaning of super-potentials is the coordinate of the particle which produces the
Liénard-Wiechert potentials. In this paper, the super-potentials in far fields are considered
analytically and numerically. It is shown that the super-potentials can be calculated from
the far electric fields produced by the particle, if the motion is periodic and non-relativistic.
This means that one can estimate the particle trajectory from the far electric fields.

1. Introduction

Liénard-Wiechert potentials are the most exact potentials in classical electrodynamics,
because they are solutions to an inhomogeneous wave equation which describes
electromagnetic fields produced by a moving point charged particle. These potentials
have been studied by many researchers and various electrodynamic phenomena have
been predicted using them. One of the examples is synchrotron radiation [1,2].
However, there is a mysterious formula relevant to Liénard-Wiechert potentials. The
formula tells us that there exist super-potentials which result in Liénard-Wiechert
potentials [3]. On the other hand, the meaning of the formula remains unclear, even
now, though Liénard-Wiechert potentials were introduced in 1898.

In this paper, the super-potentials in far fields will be considered analytically and
numerically. It will be shown that the super-potentials can be calculated from the far
electric fields produced by the particle using the mysterious formula, when the motion
is periodic and non-relativistic. On the other hand, the physical meaning of super-
potentials is the coordinate of the particle. It means that one can estimate a charged
particle trajectory using the far electric fields.

2. Some formulae relevant to Liénard-Wiechert poentials

In this section, the standard representation of Liénard-Wiechert potentials is summar-
ized for later reference. And then, super-potentials for Liénard-Wiechert potentials
are introduced and some formulas relevant to the super-potentials are presented.
Liénard-Wiechert potentials A’ are solutions to inhomogeneous wave equation
which describes electromagnetic fields produced by a moving point charged particle [4].

DA (ct, x) = —= u'(1)8[x — (1)) (1)

2
£pC

where [ is the D’ Alembertian, u' = (¢, v(2)) is the four-velocity of the particle, p(r) is
the trajectory of the particle with a parameter #, ¢ is the elementary charge and ¢, is
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a dielectric constant. Then Liénard-Wiechert potentials are written as follows:

e u'(r)
dmegc® Ry (r)u*(7) (2)
where ¢ is the velocity of light, R,(7) is the displacement vector defined by R,(7)=
x'—y(r)(y'(s} is the four-dimensional position vector of the particle defined by

(er,y(7))). And then, 7 is the so-called ‘retarded time’ which satisfies a following
causal relation:

A'let, x) =

_|x—y(r)|
-

=

(3)

Liénard-Wiechert potentials depend on the time ¢ and the position x through this
recursive relation.

Here the equation (3) can be rewritten in the following form
7=1(ct, x) (4)
because retarded time 7 is determined uniquely for any ¢ and x [4]. Then one can

regard the four-dimensional position vector y'(7) as a function of ¢f and x. That is to
say,

¥ (1) =y [r(et, x)]=y'(ct, ). (5
These functions are just super-potentials for Liénard-Wiechert potentials, because
Liénard-Wiechert potentials can be expressed using these functions y'() as follows [3]:

e

Ai(Ctsx)__-‘s Dyj[T(Ct’ x)]- (6)

mEYC

Therefore, the super-potentials y'{7) satisfy the following identical equation:
; 87 ,
OPy'[r{et, x)) = == u'(D)8[x—p(1)]. (7)

Equation (6) is mysterious because the equation tells us that coordinates of the
eleciromagnetic system A'(ct, x) are related to coordinates of the particle y'(r) by the
D’ Alembertian [, directly.

3. A relation between a charged particle trajectory and the far fields

In this section, a relation between a charged particle trajectory (or super-potentials)
and the far electric fields produced by the particle is presented.

One can also derive the equation (6) from the Fourier expansion of Liénard-
Wiechert potentials A'(ct, x) and super-potentials y'(r). If the motion of a particle is
periodic, Fourier expansion of y'(7) is written as follows (see the appendix}:

; 1 2 b .
yYie,x)=— ¥ g—'—'J. sin{n[wt—a—ER(x;o’)]}dy'(cr) (8)
27 a0 M ), ¢
where w is an angular frequency. Then (Jy'(7) becomes
oo b i
Oy'(et, x) =L ¥ G J' O sin{n[wr—cr—2 R(x; o-)]} dy'(o)
27]' n=0 n I

a

@ 2 " cos{nfwt—o—(w/c)R(x;, o)1} . | 9
= e 2y O I R(o) i) )
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On the other hand, Fourier expansion of Liénard-Wiechert potentials is [3]

© * cos{n[wt — o —(w/c)R(x; o)]}
2 z Cn J.a R(o')

TEGC” =0
Comparing equation (9) with equation (10), it is found that equation (9) is just Fourier
expansion of Liénard-Wiechert potentials except for the factor —e/8we,c. Thus, the
equation (6) was proved using the Fourier expansion of A’(ct, x) and y'(r).
From equations (6), (8) and (10), spatial components of y'(7) and A'(ct, x) are as
follows:

A‘(ct,x)=8 dy'(o). (10)

@ b
ylet, x)=—1— z QJ sin{n[wf —o—(w/c)R(x; )]} dy(o) (11)
27 n=0 N a
ew = c J"’cos{n[wt—a—(w/c)R(x; o)}

167 £5c” n2o R{o)

Alct, x)=— dy{c). (12)

Moreover, y(ct, x) can be also expressed by

o0

1 1 {*

ylct, x) = yo(ct, x)+;; ) ;J. sin{n[wt — o —(o/c}R(x; 0)]} dy(o) (13)
n=1 a

where yo{ct, x) is the term for n =0 in the equation (11). Taking note that dy,/w df=0

in equation (A7), dy, has to depend on x only. It can be found from numerical

calculation that y(x) is expressed as follows:

Yolx) = -1 2[ R(x; o) dy(o). (14)
Tl
For far fields (i.e. R(.t- )= R(x)—x-y(a)/R(x))
Yolx)= R( )J [x-y(a)]dy(o)
= —ﬁ % %) y(fr) dy(o)
X
=MXR(x) (15)

where R(x) is the distance from the centre of a charged particle trajectory to observation
point, the vector M is a constant defined by

M= J ) xdy(a). (16)

Here, taking note that far electric fields are calculated by

E{ct, x)= —-% A(et, x)

2 ) —
ew 5 "J' sin{n[wt —o—(w/c)R(x; 0)]} dy(o) (17)

8mieoc’ o R(x; o)
one can find a following relation using equations (13}, (15) and (17):

x 81raoc ,,(ct x)
R R(x) 20 (18)

y(ct, x)=Mx
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Equation (18) is just the relation between a charged particle trajectory (or super-
potentials} and the far electric fields produced by the particle. It is necessary to evaluate
the first term of equation {18} to calculate the particle trajectory y(ci, x) from the far
fields E,(ct, x). It is clear that the first term of equation (18) can be neglected, when
the motion is non-relativistic, because taking note that |x/ R(x)| <1 and |(w/c)y(a)| ~
v/c (v is the veloctiy of the particle), one can find the following relation:

w

b
yolx) =51; - ﬁ j [x-p{a)]dp{c)

b
= R .[ dy(o)
2w ¢ ),
« the second term of equation (13). (19)
Now, the value ¥ defined by

8meoc’ 2 E.{ct, x)

=-—4% ¥ ; (20)

ew” =1 n

represents the trajectory shape divided by distance R(x), when the motion is non-
relativistic. If far electric fields are observed at some points, one can calculate their

{a) z

(b z

b §

Figure 1. Comparisons of true trajectory (broken line) with trajectory (full line) calculated
using equation (18) for (&) circular motion and (b) betatron motion. 8 = v/ ¢ =0.01.
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trajectory shapes ¥, ¥,, ... using equation (20), Differences between these trajectory
shapes are only their amplitudes which are 1/ R,(x}, 1/ R;(x)}, . .. . Therefore calculating
values ¥, ¥,, ¥,, ¥, for any four points and comparing their amplitudes, the centre
of trajectory can be estimated. Consequently, one can say that a charged particle
trajectory y{ct, x) is calculated by the far electric fields, if the motion is periodic and
non-relativistic,. Two examples (circular and betatron motion) are shown in figures
1{a) and (b). A broken line denotes a true trajectory and a full line denotes the
trajectory calculated by an equation (18) in each figure. One can find a good agreement.

4. Summary

In this paper, a relation between a charged particle trajectory and the far electric fields
produced by the particle was presented using the super-poteniials for Liénard-Wiecheri
potentials.

The coordinates of the electromagnetic system A’(ct, x) are related with those
coordinates of the particle y'(7) by equation {6). And then equation (18) was derived
considering the equation (6) in far fields. This is a reason why one can estimate a

particle trajectory from the far fields.
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Appendix

Whittaker’s procedure is used [6]. Equation (3) is also written as

wt=wr+mlx-_—y‘(-‘£!l|5 w7+2_R(x; wT). (A1)
[ c
Differentiating equation (A1)
) dt=wdr+%dR(x; wT). {A2)

Dividing equation {A2) by differentiation of y'(wr}(dy'(wr)} and expanding its
inversion in Fourier series we obtain
wdt  wdr  odR(x; wr)
dy'(er) dy'(ewr) cdy'(er)
dyi(wr)_( wdr i dR(x; m’))’l
wdt \dy'(er) cdy'(wr)

1 o0 2w
=— ¥ J du exp(—inu)

271' n=—00 J 0

wdr o dR(x; c:)'r))—1

dy(wr) cdy'(wr) (A3)

X exp(inwt)(
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Transforming the variable u into & defined by

u=a'+-? Rix; o) {A4)
we obtain
i 1 0 b .
e L g o (" codalwi-c-2 o |[Jare) a9
w ar LT n=0 J',, L L c J)
where C, =1for n=0, C,=2for n#0and b (=a+2#) is determined by the following

relation
w
217=b+; R(x; b). (A6)

And then integrating equation (A5} with respect to wt, equation (3) is derived. Now,
it should be noticed that the term for n =0 in equation (A5) (dyi(wr/wt)} is written
as follows:

dyolwr) 1 J‘ v
T2

» dr dy’(o)

=(1,0). (A7)

References

(1] Schwinger J 1949 Phys. Rev. 75 1912

[2] Schott G A 1912 Electromagnetic Radiation (Cambridge: Cambridge University Press) 119

[3] Kawaguchi H and Murata S 1989 J. Phys. Soc. Japan 58 [3] 848

(4] Landau L D and Lifshitz E M 1971 Classical Theory of Fields (New York: Pergamon) Sec 63 and 64
{5] Nisbet A 1955 Proc. R. Soc. A 132 256

[6] Whittaker E T 1912 A Treatise on the Analytical Dynamics (Cambridge: Cambridge University Press) p 89



