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1. Phys. A Math. Gen. 25 (1992) 4437-4442. Printed in the UK 

On the super-potentials for Liinard-Wiechert potentials 
in far fields 

Hideki Kawaguchi and Toshihisa Honma 
Department of Electrical Engineering, Faculy of Engineering, Hokkaida University, 
Kita 13, Nishi 8, Kita-ku, Sapporo, Japan 

Abstract. There exist super-potentials which result in LiCnard-Wiechert potentials. The 
physical meaning of super-potentials is the coordinate of the particle which produces the 
LiCnard-Wiechert potentials. In this paper, the super-potentials in far fields are wnsidered 
analytically and numerically. It is shown that the super-potentials can be calculated from 
the far electric fields produced by the particle, if the motion is periodic and non-relativistic. 
This means that one can estimate the particle trajectory from the far electric fields. 

1. Introduction 

LiCnard-Wiechert potentials are the most exact potentials in classical electrodynamics, 
because they are solutions to an inhomogeneous wave equation which describes 
electromagnetic fields produced by a moving point charged particle. These potentials 
have been studied by many researchers and various electrodynamic phenomena have 
been predicted using them. One of the examples is synchrotron radiation [1,2]. 
However, there is a mysterious formula relevant to LiCnard-Wiechert potentials. The 
formula tells us that there exist super-potentials which result in LiCnard-Wiechert 
potentials [3]. On the other hand, the meaning of the formula remains unclear, even 
now, though Liinard-Wiechert potentials were introduced in 1898. 

In this paper, the super-potentials in far fields will be considered analytically and 
numerically. It will be shown that the super-potentials can be calculated from the far 
electric fields produced by the particle using the mysterious formula, when the motion 
is periodic and non-relativistic. On the other hand, the physical meaning of super- 
potentials is the coordinate of the particle. It means that one can estimate a charged 
particle trajectory using the far electric fields. 

2. Some formulae relevant to Lidoard-Wiechert pnentials 

In this section, the standard representation of LiCnard-Wiechert potentials is summar- 
ized for later reference. And then, super-potentials for LiCnard-Wiechert potentials 
are introduced and some formulas relevant to the super-potentials are presented. 

Lidnard-Wiechert potentials A' are solutions to inhomogeneous wave equation 
which describes electromagnetic fields produced by a moving point charged particle [4]. 

where 0 is the DAlembertian, U' = (c,  u ( t ) )  is the four-velocity of the particle, y ( r )  is 
the trajectory of the particle with a parameter 1, e is the elementary charge and eo is 
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a dielectric constant. Then Lienard-Wiechert potentials are written as follows: 
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e U i ( T )  

4TrE,3C2 Rk ( T )  U' ( T )  
A'(ct, X) =- 

where c is the velocity of light, R,(T) is the displacement vector defined by R'(T)= 
xi - y ' ( ~ ) ( y ' ( ~ )  is the four-dimensional position vector of the particle defined by 
( c T , Y ( T ) ) ) .  And then, T is the so-called 'retarded time' which satisfies a following 
causal relation: 

Litnard-Wiechert potentials depend on the time f and the position x through this 
recursive relation. 

Here the equation (3) can be rewritten in the following form 

T = T ( c ~ , x )  (4) 
because retarded time T is determined uniquely for any t and x [4]. Then one can 
regard the four-dimensional position vector ~ ' ( 7 )  as a function of ct and x. That is to 
say, 

y ' ( T )  = y' [T(Cf ,  X ) ]  = y'(Ct, X). ( 5 )  
These functions are just super-potentials for Lienard-Wiechert potentials, because 
Litnard-Wiechert potentials can be expressed using these functions J J ~ ( T )  as follows [ 3 ] :  

e 
8 7 l E 0 C  

A'(ct ,x)  -~ ny'[T(Ct, X)]. 

Therefore, the super-potentials $ ( T )  satisfy the following identical equation: 

Equation (6) is mysterious because the equation tells us that coordinates of the 
electromagnetic system A'(ct, x) are related to coordinates of the particle ~ ' ( 7 )  by the 
DAlembertian 0, directly. 

3. A relation between a charged particle trajectory and the far fields 

In this section, a relation between a charged particle trajectory (or super-potentials) 
and the far electric fields produced by the particle is presented. 

One can also derive the equation (6) from the Fourier expansion of Lihard- 
Wiechert potentials A'(cr, x) and super-potentials y ' ( ~ ) .  If the motion of a particle is 
periodic, Fourier expansion of y ' ( ~ )  is written as follows (see the appendix): 

(8) 
w 

where w is an angular frequency. Then O ~ ' ( T )  becomes 
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On the other hand, Fourier expansion of LiCnard-Wiechert potentials is [3] 

Comparing equation (9) with equation (lo), it is found that equation (9) is just Fourier 
expansion of Lienard-Wiechert potentials except for the factor -e/8as0c. Thus, the 
equation (6) was proved using the Fourier expansion of A'(ct, x) and y ' ( ~ ) .  

From equations (6), (8) and (lo), spatial components Of y ' ( r )  and A'(ct,x) are as 
follows: 

Moreover, y(ct, x) can be also expressed by 

y(ct,x) =yo(ct,x)+- $r n=l - n sin{n[wt-u-(u/c)R(x; u)]}dy(u) (13) 

where y,(ct, x) is the term for n = 0 in the equation (11) .  Taking note that dy,/w d t  = 0 
in equation (A7), dy, has to depend on x only. It can be found from numerical 
calculation that yo(x)  is expressed as follows: 

lab 

y d x )  = -l jab R ( x ;  U) dy(u). 
a c  

For far fields (i.e. R ( x ;  u ) = R ( x ) - x . y ( u ) / R ( x ) )  

X 
= M x -  (15) 

where R(x) is the distance from the centre of a charged particle trajectory to observation 
point, the vector M is a constant defined by 

R ( x )  

(16) M - - -  jab x M u ) .  
41r c 

Here, taking note that far electric fields are calculated by 

a 
E(d ,  x) = -- A(ct, x) 

d t  

one can find a following relation using equations (13). ( IS )  and (17): 

( 1, ) R ( x )  2 En , 
x 8as0c2 

y(ct, x) = M X - - -  
R ( x )  eo2 n - 1  n 2  
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Equation (18) is just the relation between a charged particle trajectory (or super- 
potentials) and the far electric fields produced by the particle. It is necessary to evaluate 
the first term of equation (18) to calculate the particle trajectory y(ct ,  x) from the far 
fields E.(cr, x). It is clear that the first term of equstion (18) can be neglected, when 
the motion is non-relativistic, because taking note that Ix /R(x) l  S 1 and I (w/c)y(u)1-  
u / c  (U is the veloctiy of the particle), one can find the following relation: 
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<< the second term of equation (13). (19) 

Now, the value \Ir defined by 

8a.sOc2 E.(ct,x) 
.E eoz n=l n2 

\Ir= _ _ _  

represents the trajectory shape divided by distance R ( x ) ,  when the motion is non- 
relativistic. If far electric fields are observed at some points, one can calculate their 

X 

'I I bl 

Y 

X 

Figure 1. Comparisons of true trajectory (broken line) with trajectory (full line) calculated 
using equation (18)  for ( a )  circular motion and ( b )  betatron motion. p = u/c=O.Ol. 
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trajectory shapes VI,, Y2,. . . using equation (20). Differences between these trajectory 
shapes are only their amplitudes which are l/Rl(x), l/R2(x), . . . .Therefore calculating 
values PI,  VI2, P,, P4 for any four points and comparing their amplitudes, the centre 
of trajectory can be estimated. Consequently, one can say that a charged particle 
trajectory y(ct, x) is calculated by the far electric fields, if the motion is periodic and 
non-relativistic. Two examples (circular and betatron motion) are shown in figures 
l (n )  and (a). A broken line denotes a true trajectory and a full line denotes the 
trajectory calculated by an equation (18) in each figure. One can find a good agreement. 

4. Summaq 

In this paper, a relation between a charged particle trajectory and the far electric fields 
produced by the pariicie was presented using ihe super-poieniiais For ii6nard-Wiechert 
potentials. 

The coordinates of the electromagnetic system A'(ct, x) are related with those 
coordinates of the particle ~ ' ( 7 )  by equation (6). And then equation (18) was derived 
considering the equation (6) in far fields. This is a reason why one can estimate a 
particle trajectory from the far fields. 
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Appendix 

Whittaker's procedure is used [a]. Equation (3) is also written as 

Differentiating equation (Al)  

('42) 
0 

C 
o d t = o d ~ + - d R ( x ; w ~ ) .  

Dividing equation (A2) by differentiation of y'(oT)(dy'(oT)) and expanding its 
inversion in Fourier series we obtain 

+ 
dy'(o.r)-dy'(o.r) cdy ' (or )  

o d t  o d T  odR(x ;oT)  

dy'(o7) o d T  odR(x ;oT)  --( - -  + 
o d f  dy'(w.r) c dy'(oT) 

- -L f io2" du exp(-inu) 
2a n--m 
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Transforming the variable U into U defined by 
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(A4) 
w 
C 

u = u + - R ( x ; u )  

we obtain 

where C. = 1 for n = 0, C. = 2 for n # 0 and b ( = a  + 27r) is determined by the following 
relation 

(Ab) 

And then integrating equation (A5) with respect to ot, equation (8) is derived. Now, 
it should be noticed that the term for n = 0 in equation (A5) (dy&(oT/wt) is written 
as follows: 

w 
C 

2 n  = b+- R ( x ;  b). 

=(1,0). (A7) 
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